How to evaluate an existing experiment
Currently, evaluate_existing
is only supported in the Python SDK.
If you have already run an experiment and want to add additional evaluation metrics, you
can apply any evaluators to the experiment using the evaluate_existing
method.
from langsmith import evaluate_existing
def always_half(run, example):
return {"score": 0.5}
experiment_name = "my-experiment:abcd123" # Replace with an actual experiment name or ID
evaluate_existing(experiment_name, evaluators=[always_half])
Example
Suppose you are evaluating a semantic router. You may first run an experiment:
from langsmith import evaluate
def semantic_router(inputs: dict):
return {"class": 1}
def accuracy(run, example):
prediction = run.outputs["class"]
expected = example.outputs["label"]
return {"score": prediction == expected}
results = evaluate(semantic_router, data="Router Classification Dataset", evaluators=[accuracy])
experiment_name = results.experiment_name
Later, you realize you want to add precision and recall summary metrics. The evaluate_existing
method accepts the same arguments as the evaluate
method, replacing the target
system with the experiment
you wish to add metrics to, meaning
you can add both instance-level evaluator
's and aggregate summary_evaluator
's.
from langsmith import evaluate_existing
def precision(runs: list, examples: list):
true_positives = sum([1 for run, example in zip(runs, examples) if run.outputs["class"] == example.outputs["label"]])
false_positives = sum([1 for run, example in zip(runs, examples) if run.outputs["class"] != example.outputs["label"]])
return {"score": true_positives / (true_positives + false_positives)}
def recall(runs: list, examples: list):
true_positives = sum([1 for run, example in zip(runs, examples) if run.outputs["class"] == example.outputs["label"]])
false_negatives = sum([1 for run, example in zip(runs, examples) if run.outputs["class"] != example.outputs["label"]])
return {"score": true_positives / (true_positives + false_negatives)}
evaluate_existing(experiment_name, summary_evaluators=[precision, recall])
The precision and recall metrics will now be available in the LangSmith UI for the experiment_name
experiment.
As is the case with the evaluate
function, there is an identical, asynchronous aevaluate_existing
function that can be used to evaluate experiments asynchronously.